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Abstract
In this dissertation, we present from first principles the equations which describe how

turbulence evolves on the microscale, and how this can subsequently influence the large-

scale properties of a fusion plasma. To begin our derivation, we first take advantage

of the well-separated spatial scales in a tokamak plasma to define an expansion

parameter ε ≡ ρi/L, the ratio of the ion gyroradius to equilibrium scale length. We

proceed to show that there is also a separation of timescales between the equilibrium,

fluctuation and gyrofrequencies, t−1
eq ∼ ε2ω ∼ ε3Ω0i . This, along with anisotropic

turbulence and the low-flow ordering of the electric field, forms the basis of the low-flow

gyrokinetic ordering which we use throughout. Separating the distribution function

f into an equilibrium-scale part F and a fluctuating part δf and expanding each in

ε, we perform an asymptotic expansion of the Fokker-Planck equation, introducing

an average over gyroangle at each order to close our equations by eliminating all f2

dependence. Examining terms order-by-order, the lowest-order distribution function

F0 is found to be a Maxwellian, and the first-order corrections F1 and δf1 can be

decomposed: F1 is split into a gyrotropic part F̃1 and a finite-gyroradius correction

ρ · ∇F0, where ρ is the gyroradius vector, and δf1 is split into a gyrotropic part h

and a Boltzmann response to the fluctuating electric potential δφ. The equilibrium

density n0 and temperature T0 are also shown to be constant on a flux surface, and the

equations which describe the evolution of the neoclassical (F̃1) and turbulent (h) parts

of f are presented. At third order in ε, we finally present the transport equations for

the evolution of n0 and p0, illustrating the contributions from neoclassical, collisional

and turbulent fluxes. We demonstrate the need to average both over a flux surface,

to leave only the cross-flux-surface contribution, and intermediate time and space

scales, such that only the statistical average of the turbulence contributes to the flux.

An explicit derivation of the n0 evolution equation is shown.
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The future is green energy, sustainability, renewable
energy.

— Arnold Schwarzenegger

1
Preface

The move to renewable energy sources is a vital step for humanity over the coming

decades. One particular method of obtaining almost limitless clean energy has

presented itself as an ideal solution to this global problem: fusion of the lighter

elements, as in the core of the Sun. A plentiful supply of reactants, non-radioactive

products, no geographical constraints and no risk of nuclear meltdown make terrestrial

nuclear fusion experiments the best candidate for securing a clean energy future.

Magnetic confinement fusion (MCF), in which large doughnut-shaped devices

known as tokamaks confine a plasma with strong magnetic fields while it is heated

to around 150 million °C, has achieved a high fusion rate. However, in current

experiments, energetic breakeven is yet to be reached. Vital to understanding the

large-scale heat and particle transport in these devices is the coupling of the large and

small scales in the system: turbulent transport on the microscale causes heat to be

lost from the central plasma in the tokamak, leading to reduced fusion performance.

The goal of this dissertation is to present, from first principles, the equations which

describe how turbulence evolves on the microscale, and how turbulence can influence

the large-scale properties of a fusion plasma. We will derive properties of the particle

distribution function at both large (system) scales, and small (gyroradius) scales, using

a systematic order-by-order expansion of the Fokker-Planck equation. We will then use

the gyrokinetic ordering to take moments of the Fokker-Planck equation, and show how

equations for the density and temperature evolution inside a tokamak can be derived.

1



The beginning is the most important part of the work.

— Plato

2
Background

2.1 Introduction

We begin this dissertation with a discussion of some important ideas concerning how

particles move in the strong magnetic fields inside a tokamak. In such a situation,

we find that we can motivate a separation of space and time scales based on physical

arguments and experimental data, which we can use to simplify the equations of

single-particle motion. Treatment of the magnetic geometry inside a tokamak is

made significantly more tractable by the use of flux coordinates. The separation of

spacetime scales allows us to later simplify the evolution equations for the equilibrium

quantities by averaging over the intermediate scales – such an average will coarse-grain

the high-frequency, short-wavelength variation on the gyroscale. We define these

intermediate spacetime averages, along with averages over the particle’s gyromotion

and over a flux surface, at the end of this Chapter.

The rest of this Chapter is organised as follows. First, we discuss the orderings

and assumptions which are built into the gyrokinetic model, justifying the relative

sizes of all parameters. Then, we will calculate the motion of a single particle in a

strong magnetic field, in order to choose an appropriate set of variables in which to

describe the problem. Following this, we discuss in detail the magnetic geometry of

a tokamak plasma. Finally, we will use our results to define a set of averages which

will be extensively referred back to throughout this dissertation.

2



2. Background 3

2.2 Multiple Scales and the Gyrokinetic Ordering

In a magnetised plasma, a charged particle will gyrate around its guiding centre

with a lowest-order frequency

Ω0s = ZseB0

msc
, (2.1)

known as the gyrofrequency of species s. Here, B0 is the magnitude of the equilibrium

magnetic field, c is the speed of light, e is the electron charge, and Zs and ms are the

atomic number and mass of species s respectively. The radius of gyration is

ρs = mscv⊥
ZseB0

∼ vTs
Ω0s

, (2.2)

known as the gyroradius of species s. Here, vTs is the thermal speed of species s.

The plasma beta for a tokamak plasma satisfies βi ≡ p0i/(B2
0/8π) � 1. For

example, inside the Joint European Torus (JET), which has achieved the highest ratio

of energy out to energy in to date, the conditions are such that βi ∼ 10−2 [4]. We are

therefore experimentally justified in making the assumption of strong magnetisation,

which leads to the ion gyroradius1 being much smaller than the system scale L. We

define an expansion parameter ε in the following way:

ε ≡ ρi
L
� 1. (2.3)

This value has been measured inside JET: taking L to be of order the tokamak

minor radius, the plasma inside JET satisfies ε ∼ 10−3 [4]. If we assume that the

characteristic fluctuation frequency ω is such that2 ω ∼ vT i/L, we can see that

ω ∼ εΩ0i ⇒ ω

Ω0i
∼ ε� 1. (2.4)

It is clear that the turbulent and equilibrium spatial scales, and the turbulent and

gyroperiod timescales, are both well-separated by a factor of ε � 1.
1Inside a tokamak, there are electrons present as well as ions. We will choose to order relative to

the ion parameters, since the electron gyrofrequency is such that Ω0e = (mi/Zme)Ω0i � Ω0i , and
the electron gyroradius is such that ρe ∼ Z

√
me/miρi � ρi as long as Ti ∼ Te. This means that we

can treat Ω0i
as the fast timescale, and ρi as the small length scale, since the electron equivalents

will be even faster and smaller and so will be negligible in comparison.
2The fluctuation frequency is given by the typical speed-distance ratio for a turbulent eddy, which

is vE/ρi. Hence, in the low-flow regime, ω ∼ εvTi
/ρi ∼ vTi

/L.
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A further separation of timescales can be found by turning to a diffusive treatment

of turbulent fluctuations. Let ξ0 = ξ0(x, t) be some quantity that varies on the

equilibrium spacetime scale due to diffusive transport on the microscale. The cross-

field diffusion equation in one dimension is then

∂ξ0

∂t
∼ (∆x)2

∆t
∂2ξ0

∂x2 , (2.5)

where ∆x and ∆t are the diffusive step length and timescale. We can define teq and L

as the time and space scales for the equilibrium variation through derivatives of ξ0, i.e.

∂ξ0

∂t
∼ ξ0

teq
,

∂2ξ0

∂x2 ∼
ξ0

L2 . (2.6)

We will assume that turbulent eddies are of the length scale ρi in the cross-field

direction, and of length scale L along b̂, where b̂ = B0/B0 is the unit direction of

the equilibrium magnetic field.3 Therefore, the scales for the turbulent cross-field

transport are ∆t ∼ ω−1 and ∆x ∼ ρi respectively, and so we may order terms in the

diffusion equation to obtain the size of the equilibrium timescale,

1
teq
∼ ρ2

iω
1
L2 ∼ ε3Ω0i . (2.7)

We can clearly see that there are three well-separated timescales (t−1
eq , ω, Ω0i) and

two well-separated spatial scales (ρi, L). Their relative sizes are summarised:

1
teq
∼ ε2ω ∼ ε3Ω0i , ρi ∼ εL. (2.8)

The scales for spatial and temporal derivatives are also summarised:

∇ξ0 ∼
ξ0

L
, b̂ · ∇δξ ∼ δξ

L
, ∇⊥δξ ∼

δξ

ρi
, (2.9)

∂ξ0

∂t
∼ ε3Ω0iξ0,

∂δξ

∂t
∼ εΩ0iδξ, (2.10)

where ξ0 is any equilibrium quantity and δξ is any fluctuating quantity.
3An intuitive argument as to why this should be the case is as follows: perpendicular to b̂,

transport is suppressed due to the tight gyration of particles around the field lines, which reduces
the step length for diffusive transport in this direction. In contrast, particles can stream freely along
b̂, resulting in a shearing and stretching of turbulent eddies in this direction. This is also in good
agreement with experiment [8–10].
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In our treatment, the electric and magnetic fields inside the tokamak are split

into equilibrium and fluctuating parts as follows:

B(r, t) = B0(r) + δB(r, t), E(r, t) = δE(r, t), (2.11)

with |δB|/|B0| ∼ ε. Here, we have set E0 to zero since we will consider only the low-

flow regime, in which the E×B velocity is an order smaller than the thermal velocity,

vE = c

B0
δE× b̂ ∼ εvT i, (2.12)

with B0 ≡ |B0|. We have also chosen not to include explicit time dependence in the

equilibrium magnetic field.4 From (2.12), we can deduce the size of δE:

|δE| ∼ ε
vT i
c
B0. (2.13)

We choose to write the fluctuating fields in terms of a scalar and vector potential,

δB(r, t) = ∇× δA(r, t), δE(r, t) = −∇δφ(r, t)− 1
c

∂δA(r, t)
∂t

. (2.14)

Using the fact that δA and δφ vary on the microscale, we can use (2.13) and

(2.14) to find that

|δA| ∼ ερiB0, δφ ∼ ερi
vT i
c
B0. (2.15)

In a similar fashion, we find that∣∣∣∣∣1c ∂δA∂t
∣∣∣∣∣ ∼ 1

c
ω(ερiB0) ∼ ε2

vT i
c
B0, (2.16)

meaning that the electric field is electrostatic to leading order,

δE = −∇δφ+O(ε2vT i
c
B0). (2.17)

The final assumptions we make are that the collision frequency ν is of order

the fluctuation frequency ω, and that the variation of the distribution function in

velocity space is of order the thermal velocity:

ν ∼ ω,

∣∣∣∣∣∂fs∂v

∣∣∣∣∣ ∼ fs
vT
. (2.18)

4It can be shown that the timescale for variation of the equilibrium magnetic field is the resistive
timescale, which is much longer than the timescale for the equilibrium particle and energy transport.
Hence, in deriving the transport equations, the equilibrium field can be treated as constant. (More
information can be found in [4].)
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The first assumption is made in order to keep our derivation as general as possible; if we

wish to, we may later take either limit ν � ω or ν � ω as subsidiary expansions. The

second assumption follows from the first, and the condition that the turbulent collision

terms balance with the evolution of the fluctuating part of the distribution function δf :

∂δf

∂t
∼ C[δfs, F0′

s
] ⇒ ωδf ∼ νv2

Ti

∂2δf

∂v2 ⇒ δv ∼ vTi . (2.19)

2.3 Single Particle Motion

The motion of a single particle of mass m and charge Ze in the electric and magnetic

fields described above is governed by the equations

dv
dt

= Ze

m

(
δE + v× (B0 + δB)

c

)
,

dr
dt

= v, (2.20)

with the Vlasov operator d/dt defined as

d

dt
≡ ∂

∂t
+ v · ∇+ dv

dt
· ∂
∂v
. (2.21)

We define the gyrophase ϕ by decomposing the velocity v into components parallel

and perpendicular to the local equilibrium magnetic field direction b̂,

v = v‖b̂ + v⊥(cosϕê1 + sinϕê2), (2.22)

where we have chosen our basis vectors {ê1, ê2, b̂} such that they form an instantaneous,

local, right-handed orthonormal set, obeying ê1 × ê2 = b̂ and (ê1 × ê2) · b̂ = 1.

We wish to find a set of phase space variables which isolates the fast-timescale

variation. A priori, we would expect the kinetic energy and the magnetic moment

of an individual particle,

ε = 1
2mv · v, µ = m

2B0
v⊥ · v⊥ (2.23)

to vary on a longer timescale than the gyrophase ϕ, since for a free particle in

a magnetic field they are conserved, and the electric field and collision frequency

are both small. We proceed to calculate the rate of change of these variables to

show that this is indeed the case.
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First, we calculate the rate of change of µ. Writing the perpendicular velocity

v⊥ as (I − b̂b̂) · v, we find that

dµ

dt
= − µ

B0
v · ∇B0 + m

B0
v⊥ ·

(
Ze

m

(
δE + v× δB

c

)
− v‖v · ∇b̂

)
, (2.24)

using 2.21, with (2.20) for dv/dt, and v⊥ · (v×B0) = 0. By using (2.13) for the order

of δE, we can see that the magnetic moment µ varies on a timescale ∼ εΩ0.5

Now turning to the rate of change of kinetic energy, we can see immediately that

dε

dt
= mv · dv

dt
= Zev · δE, (2.25)

where again we have substituted for dv/dt using (2.20). Referring to (2.13) again,

we can see that ε also varies on a timescale ∼ εΩ0.

The rate of change of ϕ may be calculated as follows. We begin with taking the

two perpendicular components of the velocity, v · ê1 = v⊥ cosϕ and v · ê2 = v⊥ sinϕ,

and taking the time derivative of each equation. We can manipulate the resulting

equations to give

v⊥
dϕ

dt
= cosϕ d

dt
(v · ê2)− sinϕ d

dt
(v · ê1) = −v× b̂

v⊥
· dv
dt

+ v⊥ê1 ·
dê2

dt
, (2.26)

where we have used the standard properties of a right-handed orthonormal basis.

Hence, using (2.20) to substitute for dv/dt, we find that

dϕ

dt
= −Ω0 −

v× b̂
v2
⊥
· Ze
m

(
δE + v× δB

c

)
+ ê1 ·

dê2

dt
, (2.27)

where we have identified

− v× b̂
v2
⊥
· Ze
m

v×B0

c
= −Ω0. (2.28)

(2.27) tells us that the leading-order timescale for the rate of change of the gyrophase

is Ω0, as predicted, which is an order faster than the variation of ε and µ. This means

we have found a set of velocity space variables which isolates the fast gyromotion

of the particles. To complete the set of variables, we must include the sign of the
5We omit the subscript i from now on. All further references to Ω0 and ρ will be referring to ion

quantities.
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Figure 2.1: The guiding centre transformation expresses r in terms of the guiding centre R
and the gyroradius vector ρ = b̂×v/Ω0. The ion is shown as a red dot, and its instantaneous
gyromotion is shown as a red dotted line.

parallel velocity σ = v‖/|v‖|, meaning that our final set of velocity-space variables is

(ϕ, ε, µ, σ). We will interchange between these gyrokinetic variables and the standard

velocity space variables v later on, as is convenient.

We now turn to the position variable r. Its rate of change is given by (2.22), and

therefore it clearly still varies with ϕ on the fast timescale Ω0. In order to separate

scales, we make the guiding centre transformation by expressing r in terms of the

guiding centre position R and the gyroradius vector ρ:

R ≡ r− ρ, ρ = b̂× v
Ω0

. (2.29)

A visualisation of this transformation is given in Figure 2.1.6

The rate of change of R is given by

dR
dt

= v‖b̂ + v×
(

v · ∇
(

b̂
Ω0

))
+ Ze

m

(
δE + v× δB

c

)
×
(

b̂
Ω0

)
+O(ε3vT ), (2.30)

where we have used (2.20), and the fact that b̂/Ω0 is a function of position only.

It will prove convenient to define the velocities

vM ≡ v×
(

v · ∇
(

b̂
Ω0

))
, vE ≡

Ze

m

(
δE + v× δB

c

)
×
(

b̂
Ω0

)
, (2.31)

6This transformation can also be derived using the systematic approach for higher-order corrections
to the gyrokinetic variable R detailed in [11].
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Figure 2.2: The elementary toroidal system: an ideal torus, defined such that both
the handle of the torus and its poloidal cross-section are circular. The major and minor
axes, along with the two coordinate systems: cylindrical (R, ζc, Z) and elementary toroidal
(r, θe, ζe), are shown. Note that ζc and ζe differ by a sign, to ensure both systems are
right-handed. Figure adapted from [6].

meaning that we can write the succinct expression

dR
dt

= v‖b̂ + vM + vE +O(ε3vT ). (2.32)

2.4 Flux Coordinates and Magnetic Geometry

Flux coordinates

A tokamak is topologically equivalent to a solid torus, and so we first consider the

elementary toroidal system shown in Figure 2.2. We can choose either conventional

cylindrical coordinates, or elementary toroidal coordinates: r, a variable which

characterises the length outwards from the minor axis, and two angle variables

θe and ζe, known as the poloidal and toroidal angles respectively.

For a magnetic field configuration which is not an ideal torus, but is topologically

equivalent, we can define a useful coordinate system by making use of the fact that

our plasma is magnetised. Instead of the minor axis, we define the magnetic axis to

be the field line where the equilibrium poloidal field B0θ is zero, meaning that it is a



2. Background 10

Figure 2.3: An illustration of the Sθ=π surface used in defining the poloidal ribbon flux
(lined surface). It is defined as the intersection of a surface of constant ψ with the θ = π
surface. This flux is clearly monotonically increasing as we move away from the magnetic
axis (dashed curve), with a value of zero on the magnetic axis. Figure adapted from [6].

closed curve around the major axis. A flux surface is a closed toroidal surface on which

b̂ · n̂ = 0 everywhere, where n̂ is the surface normal. This notion allows us to define a

new way of characterising distance outwards from the magnetic axis by the use of flux

surface labels: these are constant on a flux surface, meaning b̂·∇Γ = 0 for a general flux

surface label Γ. There is some freedom in choosing Γ, but it is convenient to define it

in such a way that Γ = 0 on the magnetic axis, and that it is monotonically increasing

as we move outwards from the magnetic axis (similar to r in the elementary case).

We therefore choose Γ to be the poloidal ribbon flux ψ, defined as the flux through a

circular ribbon stretched between the flux surface and the magnetic axis (Figure 2.3):7

ψ = 1
2π

∫
Sθ=π

dS ·B0. (2.33)

Note that the form of ψ as shown above is not dependent on the particular forms of

θ and ζ we choose; all that is required is that they are 2π-periodic and are poloidal and

toroidal variables. We have therefore found a good set of flux coordinates: (ψ, θ, ζ).

7The 2π normalisation is included according to convention.
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Figure 2.4: The cylindrical coordinate system employed in a tokamak. The axisymmetric
flux surfaces are shown as concentric surfaces about the magnetic axis (blue curve). Figure
adapted from [4].

Axisymmetric magnetic field

In the case of an axisymmetric equilibrium magnetic field8, we can write B0 in a par-

ticularly elegant form, which we derive here. For an axisymmetric magnetic geometry,

in cylindrical coordinates (R, ζ, z) as shown in Figure 2.4, we can write the field as

B0 = ∇×A0 =
(
∂A0R
∂z
− ∂A0z

∂R

)
R︸ ︷︷ ︸

≡I(R,z)

∇ζ + 1
R

∂(RA0ζ)
∂R

∇z −
∂A0ζ

∂z
∇R, (2.34)

where I(R, z) = R2B0 · ∇ζ is a measure of the toroidal magnetic field. Recalling our

definition of the poloidal ribbon flux (cf. (2.33)), we see that

ψ(R, z) ≡ 1
2π

∫
Sθ=π

B0(R, z) · dS = 1
2π

∫
∂Sθ=π

A0(R, z) · dl

= 1
2π

∫ 2π

0
RdζA0ζ(R, z)

= RA0ζ(R, z).

(2.35)

Taking the gradient, we find that

∇ψ =
∂(RA0ζ)
∂R

∇R +R
∂A0ζ

∂z
∇z, (2.36)

8In modern tokamaks, the deviation from this condition is much smaller than ε (cf. [4]) and so
we are safe to make this assumption for B0, since all deviations are small enough to be absorbed
into the O(ε2B0) (or higher) corrections.
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and hence that

∇ψ ×∇ζ = 1
R

∂(RA0ζ)
∂R

∇z −
∂A0ζ

∂z
∇R, (2.37)

which exactly matches the part of B0 that we didn’t define as I(R, z). We can

therefore write an axisymmetric equilibrium magnetic field as9

B0 = I(R, z)∇ζ +∇ψ ×∇ζ. (2.38)

2.5 Useful Averages

Gyroaverage

The first average which we will introduce is the gyroaverage 〈α〉R of any function

of gyroangle α(ϕ, . . .) at fixed guiding centre R, defined by

〈α〉R ≡
1

2π

∫ 2π

0
dϕα(ϕ, . . .)

∣∣∣∣∣
R
. (2.39)

This average eliminates the fast, Ω-timescale variation of the function α(ϕ, . . .),

reducing the dimension of phase space from 6D to 5D.

Intermediate spatial average

Utilising the separation of spatial scales, we employ an intermediate spatial average

(ISA) over length scales λ such that ρ � λ � L. We can formally define this

length as λ ∼ ε
1
2L, since ε is sufficiently small as to make ε 1

2 � 1, meaning λ is still

well-separated from both the gyroradius and equilibrium scales.

Armed with the information about the magnetic geometry of our system from

Section 2.4, we are define the ISA of some quantity X as a volume average over the

toroidal annulus between two flux surfaces characterised by ψ and ψ + ∆ψ, where

the characteristic length of the annulus in the radial direction d ∼ λ:

〈X〉λ ≡
1

∆V

∫
∆V

X d3r = 1
∆V

∫ 2π

0
dζ
∫ π

−π
dθ
∫ ψ+∆ψ

ψ
dψ′JX. (2.40)

9It can also be shown that I = I(ψ) is a flux function; however, we will not use that property in
this work.
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Figure 2.5: The quantities involved in the intermediate spatial average are labelled in a
tokamak. Figure adapted from [4].

Here, ∆V is the volume of the toroidal annulus,

∆V =
∫ 2π

0
dζ
∫ π

−π
dθ
∫ ψ+∆ψ

ψ
dψ′J, (2.41)

and J is the Jacobian of the coordinate transformation (r) → (ψ′, θ, ζ),10

J ≡
∣∣∣∣∣ det ∂(r)

∂(ψ′, θ, ζ)

∣∣∣∣∣ = ∂r
∂ζ
·
(
∂r
∂ψ′
× ∂r
∂θ

)
= ∂xi

∂ζ

(
εijk

∂xj
∂ψ′

∂xk
∂θ

)
=
(
∇ζ ·(∇ψ′×∇θ)

)−1
.

(2.42)

Note that since (ψ′, θ, ζ) forms a right-handed coordinate system, the quantity above

is always positive and so we no longer require the modulus. A cartoon of the structure

of the flux surfaces relevant for the ISA is shown in Figure 2.5. Importantly, the

ISA is taken at a fixed location in space characterised by some ψ, and since B0 does

not vary with time, the ISA commutes with all time averages.

Flux surface average

We define the flux surface average as the limit of the ISA as ∆ψ and ∆V tend to

zero.11 The result is an average over the flux surface characterised by ψ. The volume
10Note that ψ′ is used as an integration variable instead of ψ since we wish to keep the ISA as a

function of the flux surface we are averaging around, which we have chosen to denote by ψ.
11These limits can clearly be taken concurrently, since ∆ψ → 0 implies vanishing ∆V .
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element d3r in the ISA can be decomposed by definition into

d3r ≡ |dr · dS(ψ)|, (2.43)

where dr is the infinitesimal change in the position vector along the ψ coordinate

curve, and dS(ψ) is the vector surface element on the flux surface labelled by ψ. If

we align dS such that when dr is in the positive-ψ direction, the quantity in (2.43) is

positive, we may omit the absolute value bars. The outward normal to a flux surface

labelled by ψ is ∇ψ/|∇ψ|, since ψ is increasing away from the magnetic axis, and

so dS(ψ) can be written as ∇ψdS/|∇ψ|. Using that dr · ∇ψ ≡ dψ, we are left with

d3r = dψdS/|∇ψ|, and hence we may rewrite the ISA as

〈X〉λ = 1
∆V

∫
∆V

X d3r = 1
∆V

∫ ψ+∆ψ

ψ
dψ′

∫
∂V (ψ′)

XdS

|∇ψ′|
, (2.44)

where ∂V (ψ′) is the flux surface labelled by ψ′.

Taking the limits ∆V → 0, ∆ψ → 0, we may formally substitute ∂V (ψ′)→ ∂V (ψ)

and |∇ψ′| → |∇ψ| in (2.44). Doing so, we find that

lim
∆V→0
∆ψ→0

〈X〉λ = lim
∆V→0
∆ψ→0

1
∆V

∫ ψ+∆ψ

ψ
dψ′

∫
∂V (ψ′)

XdS

|∇ψ′|
= lim

∆V→0
∆ψ→0

∆ψ
∆V

∫
∂V (ψ)

XdS

|∇ψ|
. (2.45)

Substituting V ′ = dV/dψ in place of ∆V/∆ψ, we arrive at an expression for the FSA:

〈X〉ψ ≡ lim
∆V→0
∆ψ→0

〈X〉λ = 1
V ′

∫
∂V (ψ)

XdS

|∇ψ|
. (2.46)

It is easy to see that the FSA can also be written as an integral over angles,

〈X〉ψ = 1
V ′

∫ π

−π
dθ
∫ 2π

0
dζJX, (2.47)

by implementing the following result in (2.46):

Jdθdζ = 1
|∇ψ|

dθdζ

êψ · (∇θ ×∇ζ) = dS

|∇ψ|
, (2.48)

where êψ = ∇ψ/|∇ψ| is the unit contravariant basis vector in the ψ′ direction.
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Flux surface average of a divergence

A quantity it will later prove useful to have calculated is the FSA of a divergence

∇ · X, for some general vector X. We do so as follows:

〈∇ ·X〉ψ = lim
∆V→0
∆ψ→0

1
∆V

∫
∆V
∇ ·Xd3r

= lim
∆V→0
∆ψ→0

1
∆V

∫
∂∆V

X · ∇ψ
′

|∇ψ′|
dS

= lim
∆V→0
∆ψ→0

1
∆V

(∫
∂V (ψ+∆ψ)

X · ∇ψ
′

|∇ψ′|

∣∣∣∣∣
ψ′=ψ+∆ψ

dS −
∫
∂V (ψ)

X · ∇ψ
′

|∇ψ′|

∣∣∣∣∣
ψ′=ψ

dS

)
.

(2.49)

Here, we have split ∂∆V into its inner and outer bounding flux surfaces, and used

that ∇ψ′/|∇ψ′| may be substituted for the flux surface normal n̂ up to a minus sign;

indeed, the minus sign in the second term is due to the surface normal of the inner

flux surface pointing anti-parallel to ∇ψ′, towards the magnetic axis. Using (2.46),

we can see that the first quantity in the brackets is just V ′〈X · ∇ψ〉ψ+∆ψ, and the

second quantity is V ′〈X · ∇ψ〉ψ. We therefore find that

〈∇·X〉ψ = lim
∆V→0
∆ψ→0

1
∆V

(
V ′〈X·∇ψ〉ψ+∆ψ−V ′〈X·∇ψ〉ψ

)
= 1
V ′

∂

∂ψ

(
V ′〈X·∇ψ〉ψ

)
, (2.50)

where we have used the chain rule to obtain the final equality. We therefore have

〈∇ ·X〉ψ = 1
V ′

∂

∂ψ

(
V ′〈X · ∇ψ〉ψ

)
. (2.51)

Intermediate time average

Analogously to the intermediate spatial average, we can define an intermediate time

average (ITA) of some time-dependent quantity ξ(t):

ξ(t) ≡ 1
τ

∫ t+τ/2

t−τ/2
ξ(t′)dt′, (2.52)

where τ is defined to be in between and well-separated from the turbulent and

equilibrium timescales, t−1
eq � τ−1 � ω. We may formally define its size as τ−1 ∼

εω ∼ ε2Ω. We proceed to see how this time average acts on various quantities.
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This average coarse-grains timescales which are at least an order smaller than

the equilibrium timescale. We may therefore treat all equilibrium quantities ξ0(t) as

constant on this timescale, and therefore approximate ξ0(t′) ≈ ξ0(t) in the integrand,

meaning that ξ0(t) ≈ ξ0(t). To see what kind of error we can expect, we can Taylor

expand at the bounds of our integral: ξ0(t+O(τ)) = ξ0(t) +O(τ)∂ξ0(t)/∂t. It can

be seen that the last term is O(εξ0(t)) by using that equilibrium quantities vary on

the t−1
eq ∼ ε3Ω timescale, and then making use of the ordering stated above to state

Ωτ ∼ ε−2. We may therefore conclude that ξ0(t) = ξ0(t) +O(εξ0(t)) – hence, the ITA

leaves equilibrium quantities unchanged to leading order in ε.

Since a fluctuating quantity δξ(t) oscillates many times during the period the ITA

is averaging over, we use statistical periodicity of the turbulence in time to assert that

δξ(t) ≈ 0. To estimate the error here, we observe that the only contribution to the

integral will be from the parts of the fluctuations which don’t cancel, and so after

cancellation the leftover piece will be of order the product of the typical width of a

fluctuation period with the typical height of a fluctuation. We use that the typical

amplitude of a fluctuation is δξ(t), and the fluctuation period ω−1 ∼ ετ , to find that

δξ(t) = O(εδξ(t)) – hence, the ITA drops each fluctuating term by an order in ε.



Be grateful of small things, because it is in them that
your strength lies.

— Mother Teresa

3
Gyrokinetic Expansion

3.1 Introduction

Here we perform an asymptotic expansion of the Fokker-Planck equation. In doing so,

we will derive many key results, including the gyrokinetic equation which describes

the evolution of h, the gyrophase-independent, first-order piece of the fluctuating

distribution function δf .

The remainder of this Chapter is organised as follows. We start with the Fokker-

Planck equation for species s,

df

dt
= ∂fs

∂t
+ v · ∂fs

∂r
+ Zse

ms

(
E + v×B

c

)
· ∂fs
∂v

=
∑
s′
C[fs, fs′ ], (3.1)

where fs is the distribution function of species s, E is the electric field, B is the

magnetic field, c is the speed of light, Zse and ms are the charge and mass of species

s, and C[fs, fs′ ] is the collision operator describing collisions of species s with another

species s′. We formally separate this equation into equilibrium and fluctuating parts,

and then systematically expand in the small parameter ε (cf. (2.3)). Assuming all

relevant dynamics occur on timescales much greater than a gyroperiod, the gyroaverage

defined in (2.39) allows us to close our equations by eliminating the need to calculate

the second-order correction f2. We examine different orders of the gyroaveraged

Fokker-Planck equation to derive a hierarchical set of equations for the components of

the distribution function f : namely, the neoclassical (F̃1) and turbulent (h) first-order

corrections to the Maxwell-Boltzmann equilibrium (F0 exp (−Zeδφ/T )).

17
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3.2 Fokker-Planck Equation

We begin our manipulation of the Fokker-Planck equation in the original (r,v)

coordinates. Starting with (3.1) and substituting for the electric field in terms of

potentials using (2.14), we find

∂f

∂t
+ v · ∂f

∂r
+ Ze

m

(
−∇δφ− 1

c

∂δA
∂t

+ v× δB
c

+ v×B0

c

)
· ∂f
∂v

=
∑
s′
C[f, fs′ ], (3.2)

where we have dropped the species label s. We split our distribution function f into

an equilibrium part F and a fluctuating part δf and expand each in ε,

f = F0 + F1 + F2 + . . .+ δf1 + δf2 + . . . , (3.3)

where the subscript indicates the order of each term in ε.1

We will take the collision operator to be ordered as

C[f, g] ∼ ν
fg

F0
∼ εΩ0

fg

F0
(3.4)

in accordance with [2, 4], since the collision frequency ν is taken to be of order

the fluctuation frequency ω.

We proceed to examine the Fokker-Planck equation order-by-order.

O(Ω0F0): F0 is gyrotropic

At lowest order in ε, we find that

Ze

m

(
v×B0

c

)
· ∂F0

∂v
= 0 ⇒ ∂F0

∂ϕ

∣∣∣∣∣
r

= 0, (3.5)

where we have used that v× b̂ = −∂v/∂ϕ, making use of (2.22) and the properties of

a right-handed orthonormal basis. This tells us that F0 is independent of gyroangle

at constant r. We can use the chain rule to find

∂

∂ϕ

∣∣∣∣∣
r

= ∂

∂ϕ

∣∣∣∣∣
R

+ ∂R
∂ϕ

∣∣∣∣∣
r
· ∂
∂R

∣∣∣∣∣
ϕ

(3.6)

where, using (2.22) and (2.29), we can calculate

∂R
∂ϕ

∣∣∣∣∣
r

= ∂

∂ϕ

(
r− v⊥

Ω0
b̂× (cosϕê1 + sinϕê2)

)∣∣∣∣∣
r

= 1
Ω0

v⊥ (3.7)

1Note that δf0 = 0 (there is no fluctuation of the distribution function to lowest order).
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and

∂

∂r

∣∣∣∣∣
ϕ

= dR
dr
· ∂
∂R

∣∣∣∣∣
ϕ

=
(

I−∇
(

b̂
Ω0

)
× v

)
· ∂
∂R

∣∣∣∣∣
ϕ

= (1 +O(ε)) ∂

∂R

∣∣∣∣∣
ϕ

, (3.8)

using the fact that b̂/Ω0 is an equilibrium quantity and so varies on the length scale

L. (3.8) tells us that partial derivatives taken with respect to R are equivalent to

partial derivatives taken with respect to r plus an O(ε) correction, and so at any

given order we can freely interchange the two.2 We do so in (3.6), and obtain a

useful relationship between the two angle derivatives:

∂

∂ϕ

∣∣∣∣∣
r

= ∂

∂ϕ

∣∣∣∣∣
R

+ 1
Ω0

v⊥ · ∇+O(ε). (3.9)

Applying (3.9) in (4.13), we can finally write

∂F0

∂ϕ

∣∣∣∣∣
R

= 0 (3.10)

since F0 is an equilibrium quantity, meaning the (1/Ω0)v⊥ ·∇F0 term is O(εF0). Thus,

to leading order, F0(r,v, t) is also independent of gyrophase at fixed guiding centre:

we say that F0 is gyrotropic in (r,v) coordinates to leading order. We will use (4.13)

in the following Section, where we stay in (r,v) coordinates.

O(εΩ0F0): F0 is Maxwellian, n and T are flux functions, and
δf1 and F1 can be decomposed

At O(ε), our equation is

v · ∇F0 + v⊥ · ∇δf1 + Ze

m

(
−∇δφ+ v× δB

c

)
· ∂F0

∂v

− Ω0
∂F1

∂ϕ

∣∣∣∣∣
r
− Ω0

∂δf1

∂ϕ

∣∣∣∣∣
r

=
∑
s′
C[F0, F0s′ ],

(3.11)

where we have used again that v × b̂ = −∂v/∂ϕ to substitute for the two terms

involving B0. Multiplying this equation by (1 + logF0) and manipulating the

2We hereafter denote both ∂/∂r and ∂/∂R as ∇.
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result, we find that

v · ∇(F0 logF0) + (1 + logF0)v⊥ · ∇δf1 + ∂

∂v
·
[
Ze

m

(
−∇δφ+ v× δB

c

)
F0 logF0

]

− (1 + logF0)
(

Ω0
∂F1

∂ϕ

∣∣∣∣∣
r

+ Ω0
∂δf1

∂ϕ

∣∣∣∣∣
r

)
= (1 + logF0)

∑
s′
C[F0, F0s′ ].

(3.12)

On integration in d3v, keeping r constant and using that F0 goes to zero at infinity and

all quantities are single-valued in ϕ, we dispose of the exact divergence in ∂/∂v and

the two derivatives in ϕ. Collisions between any two species conserve particle number,∫
d3v

∑
s′
C[F0, F0s′ ] = 0, (3.13)

and so we are left with∫
d3v

(
v ·∇(F0 logF0) + (1 + logF0)v⊥ ·∇δf1

)
=
∫
d3v logF0

∑
s′
C[F0, F0s′ ]. (3.14)

We immediately see that the v⊥ · ∇(F0 logF0) component of the first term integrates

to zero, since F0 is independent of ϕ, and
∫ 2π

0 v⊥dϕ = 0 using (2.22). Further, we

may use (3.9) to rewrite the second term as∫
d3v(1 + logF0)v⊥ · ∇δf1 =

∫
d3v(1 + logF0)Ω0

(
∂

∂ϕ

∣∣∣∣∣
r
− ∂

∂ϕ

∣∣∣∣∣
R

)
δf1 = 0, (3.15)

where for the last equality we use again that F0 is independent of ϕ, and δf1 is

independent of ϕ at fixed r, and single-valued in ϕ at fixed R. Hence, (3.14) becomes∫
d3v v‖b̂ · ∇(F0 logF0) =

∫
d3v logF0

∑
s′
C[F0, F0s′ ]. (3.16)

Applying the intermediate spatial average (ISA) (cf. Section 2.5), we have〈∫
d3v v‖b̂ · ∇(F0 logF0)

〉
λ

=
〈∫

d3v logF0
∑
s′
C[F0, F0s′ ]

〉
λ

. (3.17)

To make progress, we follow [4] and transform the integral on the left hand side

into an integral in the gyrokinetic variables (µ, ε, ϕ, σ). The volume element in

velocity space is d3v = v⊥dv‖dv⊥dϕ = v⊥J
′dεdµdϕ, where J ′ is the Jacobian of the

transformation (v‖, v⊥, ϕ) → (ε, µ, ϕ) given by

J ′ =
∣∣∣∣∣ det

[
∂v‖/∂ε ∂v⊥/∂ε
∂v‖/∂µ ∂v⊥/∂µ

]∣∣∣∣∣ = B0

m2|v‖|v⊥
, (3.18)
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and so the left-hand side of (3.17) becomes〈∫
d3v v‖b̂ · ∇(F0 logF0)

〉
λ

=
〈∑

σ

∫ dεdµdϕ

m2|v‖|
v‖B0 · ∇(F0 logF0)

〉
λ

=
〈
∇ ·

(∑
σ

∫ dεdµdϕ

m2|v‖|
v‖B0(F0 logF0)

)〉
λ

=
〈
∇ ·

(∫
d3v v‖b̂(F0 logF0)

)〉
λ

= 1
∆V

∫
d3v

∫
∂∆V

dS · (v‖b̂F0 logF0),

(3.19)

where ∂∆V is the surface which bounds the annulus volume ∆V between the flux

surfaces, and dS is the area element pointing outwardly normal the bounding surface.

Since we are integrating over flux surfaces, b̂ · dS = 0 over the whole region of

integration, meaning that the left-hand side of (3.17) disappears and we are left with
〈∫

d3v logF0
∑
s′
C[F0, F0s′ ]

〉
λ

= 0. (3.20)

Recalling that the ISA was defined as an average over scales λ such that ρ� λ� L,

and that F0 only varies over the length scale L, the ISA leaves all of the quantities

in the argument of (3.20) unchanged. We may therefore conclude that

∫
d3v logF0

∑
s′
C[F0, F0s′ ] = 0, (3.21)

and therefore, by Boltzmann’s H-Theorem, we find that the lowest-order distribution

function F0 is a local Maxwellian:3

F0 = n0(r, t)
(

m

2πT0(r, t)

)3/2

exp
(
− mv2

2T0(r, t)

)
⇒ ∂F0

∂v
= − mv

T0(r, t)F0.

(3.22)

We have included the spatial and temporal dependence in T0 and n0 here, noting

that they are both equilibrium quantities. We also note that the H-Theorem enforces

equal temperatures across all species4, and therefore ∑s′ C[F0, F0s′ ] = 0. Using this in
3We omit a mean flow in our Maxwellian, since here we consider a subsonically rotating plasma,

in which Ma ≡ u/vT � 1.
4However, we later allow for ad hoc collisional temperature equilibriation in the transport

equations.
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(3.11), along with (3.9) to substitute for the ϕ derivatives of F1 and δf1 at constant r

(noting that the v⊥ · ∇ term is an order higher when acting on F1), we obtain

v · ∇F0 + ZeF0

T0(r, t)v⊥ · ∇δφ = Ω0
∂F1

∂ϕ

∣∣∣∣∣
R

+ Ω0
∂δf1

∂ϕ

∣∣∣∣∣
R
, (3.23)

where we have also used that the v‖b̂ · ∇δφ term is an order smaller. Using

(3.9), we can rewrite

v⊥ · ∇F0(r) = −Ω0
∂

∂ϕ

(
F0(r)

)∣∣∣∣∣
R

= −Ω0
∂

∂ϕ

(
���

�:0
F0(R) + ρ · ∇F0(r)

)∣∣∣∣∣
R
, (3.24)

where we have Taylor expanded in the gyroradius. Using this, and noting that δφ

is independent of ϕ at fixed r, and F0 and T are gyrotropic to leading order and

so can be brought inside ∂/∂ϕ|R, (3.23) becomes

v‖b̂ ·∇F0−Ω0
∂

∂ϕ

(
ρ ·∇F0

)∣∣∣∣∣
R
−Ω0

∂

∂ϕ

(
Zeδφ

T0
F0

)∣∣∣∣∣
R

= Ω0
∂F1

∂ϕ

∣∣∣∣∣
R

+ Ω0
∂δf1

∂ϕ

∣∣∣∣∣
R
. (3.25)

Gyroaveraging this equation (cf. (2.39)), and using that all functions of ϕ are

single-valued in ϕ at fixed R, we find that

b̂ · ∇F0 = 0, (3.26)

which says that to leading order, our distribution function does not vary along magnetic

field lines. Since the flux surfaces labelled by ψ also satisfy b̂ · ∇ψ = 0 by definition,

we conclude that F0 = F0(ψ, v, t), i.e. F0 is a flux function in position space. Inserting

the Maxwellian form of F0 from (3.22) into (3.26) and dividing through5 by F0, we find

b̂ ·
(

1
n0
∇n0 −

3
2

1
T0
∇T0 + mv2

2T0
2∇T0

)
= 0 ∀ v. (3.27)

Since (3.27) holds for all v, and n0 and T0 are independent of velocity, we con-

clude b̂ · ∇n0 = 0 and b̂ · ∇T0 = 0 separately, i.e. density and temperature are

also flux functions:

n0 = n0(ψ, t), T0 = T0(ψ, t). (3.28)

5This is allowed because F0 is Maxwellian, and therefore non-zero everywhere except at infinity.
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We now substitute (3.26) into (3.25), and average over perturbations, to find

that F1 obeys the equation

Ω0
∂F1

∂ϕ

∣∣∣∣∣
R

= −Ω0
∂

∂ϕ

(
ρ · ∇F0(r)

)∣∣∣∣∣
R
. (3.29)

This clearly has the solution

F1 = −ρ · ∇F0 + F̃1(R, ε, µ, σ, t), (3.30)

where the constant of gyrophase integration F̃1 is the gyrotropic part of F1. We have

used gyrokinetic variables in F̃1, in order to illustrate the lack of ϕ dependence. The

fact it was constructed to be independent of ϕ at constant R also implies that it

is a function of R only in position space. Subtracting (3.29) from (3.25), we are

left with an equation featuring only fluctuating terms:

∂δf1

∂ϕ

∣∣∣∣∣
R

= − ∂

∂ϕ

(
Zeδφ

T0
F0

)∣∣∣∣∣
R
, (3.31)

and so we can clearly see that δf1 has the solution

δf1 = −Zeδφ
T0

F0 + h(R, ε, µ, σ, t), (3.32)

where the constant of gyrophase integration h is the gyrotropic part of δf1. Since it is

also a function of R only in position space, we conclude that it must correspond to a dis-

tribution of charged rings. The first term reveals that, as might be expected, there is a

Boltzmann correction to the Maxwellian equilibrium due to the electrostatic part of δE:

F0 → F0 exp
(
− Zeδφ

T0

)
. (3.33)

A summary of the results we have derived in this Section can be found below:

f = F0 + F̃1 − ρ · ∇F0 −
Zeδφ

T0
F0 + h+ F2 + δf2 +O(ε3F0),

∂F0

∂ϕ

∣∣∣∣∣
R

= ∂F̃1

∂ϕ

∣∣∣∣∣
R

= ∂h

∂ϕ

∣∣∣∣∣
R

= 0,

F0 = n0(ψ, t)
(

m

2πT0(ψ, t)

)3/2

exp
(
− mv2

2T0(ψ, t)

)
.

(3.34)

(3.35)

(3.36)
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O(ε2Ω0F0): Gyrokinetic equation and neoclassical theory

At this order, it is convenient to transform to the gyrokinetic variables derived in Sec-

tion 2.3. The gyroaveraged Fokker-Planck equation in terms of these new variables is〈
df

dt

〉
R

=
〈
∂f

∂t
+ dR

dt
· ∂f
∂R

+ dµ

dt

∂f

∂µ
+ dε

dt

∂f

∂ε
+ dϕ

dt

∂f

∂ϕ

〉
R

=
〈∑

s′
C[f, fs′ ]

〉
R
. (3.37)

We will absorb terms into an equilibrium distribution as a function of the guiding

centre variable R, by recognising the Taylor expansion of F0(R) as follows:

F0(r)− ρ · ∇F0 = F0(R) +O(ε2F0), (3.38)

where the correction can be absorbed into f2. We reiterate that F0 being a function of

the gyrokinetic variables (R, ε, t) means that it is unaffected by the gyroaverage, which

is taken at constant R. The fluctuating potentials, δφ and δA, remain functions of

(r,v, t).6 For clarity, we will separately consider each term in the expansion of 〈df/dt〉R:〈
df

dt

〉
R

=
〈
dF0

dt
+ dF̃1

dt
− d

dt

(
Zeδφ

T0
F0

)
+ dh

dt
+ d

dt

(
F2 + δf2

)〉
R

+O(ε3Ω0F0). (3.39)

Since we balanced terms at lower orders in the previous Sections, we will be left with

only the O(ε2Ω0F0) terms on the left-hand side of (3.37). The collision terms on the

right-hand side can also be expanded to find that they contribute at this order. By

averaging over perturbations, we will discover the evolution equations for h and F̃1.

Beginning with F0, we see that its full form in the gyrokinetic variables is

F0(ψ(R), ε, t) = n(ψ(R), t)
(

m

2πT0(ψ(R), t)

)3/2

exp
(
− ε

T0(ψ(R), t)

)
, (3.40)

and so using (3.26), (2.25) for dε/dt, and (2.32) for dR/dt, we find that

dF0

dt
= (vM + vE) · ∇F0 + ZeF0

T0

(
v · ∇δφ+ v

c
· ∂δA
∂t

)
+O(ε3Ω0F0). (3.41)

Gyroaveraging this equation, and using that 〈F0(R, ε, t)〉R = F0, we see that〈
dF0

dt

〉
R

=
(
〈vM〉R + 〈vE〉R

)
· ∇F0 + ZeF0

T0

〈
v‖b̂ · ∇δφ+ v

c
· ∂δA
∂t

〉
R

+O(ε3Ω0F0),

(3.42)
6They obviously cannot be written as a Taylor expansion in the gyroradius, since they vary on

this scale, and so must be kept functions of the exact position.
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where we have used (3.9) to eliminate v⊥ · ∇δφ as usual.

Calculating 〈vE〉R using (2.31), we find that

〈vE〉R = c

B

〈
b̂×

(
∇δφ+ 1

c

∂δA
∂t
−∇

(
v · δA
c

)
+ 1
c

(v · ∇)δA
)〉

R

= c

B
b̂× 〈∇χ〉R +O(ε2vT ),

(3.43)

defining χ ≡ δφ − v · δA/c as the gyrokinetic potential. We have also used (3.9)

to eliminate 〈v⊥ · ∇δA〉R, and that the v‖b̂ · ∇δA term is higher-order. We define

the generalised E × B velocity to be

vχ ≡
c

B0
b̂× 〈∇χ〉R. (3.44)

Calculating 〈vB〉R using (2.31), we find that

〈vB〉R = v2
‖b̂×

(
b̂ · ∇

(
b̂
Ω0

))
+ v2

⊥
2 ê1 ×

(
ê1 · ∇

(
b̂
Ω0

))
+ v2

⊥
2 ê2 ×

(
ê2 · ∇

(
b̂
Ω0

))
(3.45)

using (2.22), and noting that all cross terms involving one v⊥ will gyroaverage to zero,

all cross terms within v⊥v⊥ involving just one sine or cosine will also gyroaverage

to zero, and squares of sines and cosines each gyroaverage to 1/2. Using simple

vector calculus and rewriting ê1ê1 + ê2ê2 = I − b̂b̂, this can be written in the

more physically illuminating form

〈vB〉R =
v2
‖

Ω0
b̂× (b̂ · ∇b̂) + v2

⊥
2Ω0

b̂ · (∇× b̂)b̂ + v2
⊥

2Ω2
0
b̂×∇Ω0, (3.46)

in which we can identify the well-known Baños, ∇B and curvature drifts

vBa ≡
v2
⊥

2Ω0
b̂ · (∇× b̂)b̂, (3.47)

v∇B ≡
v2
⊥

2Ω2
0
b̂×∇Ω0, (3.48)

vκ ≡
v2
‖

Ω0
b̂× (b̂ · ∇b̂) (3.49)

respectively. Our final equation for 〈dF0/dt〉R is then〈
dF0

dt

〉
R

= (v∇B + vκ + vχ) · ∇F0

+ ZeF0

T0

〈(
v‖b̂ · ∇δφ+ v

c
· ∂δA
∂t

)〉
R

+O(ε3Ω0F0),

(3.50)
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where we have used that vBa · ∇F0 ∝ b̂ · ∇F0 = 0.

On to F̃1, and using (2.32) for dR/dt and that F̃1 is gyrotropic, we find

dF̃1

dt
= v‖b̂ · ∇F̃1 + dµ

dt

∂F̃1

∂µ
+ dε

dt

∂F̃1

∂ε
+O(ε3Ω0F0). (3.51)

Again performing a gyroaverage,〈
dF̃1

dt

〉
R

= v‖b̂ · ∇F̃1 +
〈
dµ

dt

〉
R

∂F̃1

∂µ
+
〈
dε

dt

〉
R

∂F̃1

∂ε
+O(ε3Ω0F0). (3.52)

Using (2.24) for dµ/dt, we calculate its gyroaverage and find7

〈
dµ

dt

〉
R

= − µ

B0
v‖b̂ · ∇B0 + Ze

B0

〈
v⊥ ·

(
δE + v× δB

c

)〉
R
− µv‖(I− b̂b̂) : ∇b̂,

(3.53)

where we have decomposed v using (2.22), and used that 〈v̂⊥v̂⊥〉R = (I− b̂b̂)/2 and

〈v̂⊥〉R = 0. Rewriting the second term in terms of potentials using (2.14), and replacing

v×δB→ v‖b̂×δB since it appears in a triple product with v⊥, we find that it becomes

Ze

B0

〈
v⊥ ·

(
−∇δφ− 1

c

∂δA
∂t

+ 1
c

(
∇(v‖b̂ · δA)− v‖b̂ · ∇δA

)〉
R

= −Ze
B0

〈
v⊥
c
· ∂δA
∂t

〉
R

(3.54)

using (3.9) to eliminate both 〈v⊥ · ∇(. . . )〉R terms, and noting that v‖b̂ · ∇δA is

higher order. We can also simplify the third term as follows:

− µv‖(I− b̂b̂) : ∇b̂ = −µv‖
(
∂jbj −

1
2bi�

���:
0

∂i(bjbj)
)

= −µv‖∇ · b̂. (3.55)

Substituting these into (3.53), we find that

〈
dµ

dt

〉
R

= −µv‖
�
�
�
��>

0
∇ ·B0

B0
− Ze

B0

〈
v⊥
c
· ∂δA
∂t

〉
R

= O(ε2Ω0µ), (3.56)

where we have used that ∇ · b̂ + (1/B0)b̂ · ∇B0 = (1/B0)∇ · B0. Using (2.25) for

dε/dt, we calculate its gyroaverage in a similar fashion:〈
dε

dt

〉
R

= −Ze
〈
v‖b̂ · ∇δφ+ v

c
· ∂δA
∂t

〉
R

= O(ε2Ω0ε). (3.57)

7The double contraction operation is defined as the trace of the matrix obtained by standard
matrix multiplication of the arguments, A : B ≡

∑3
i,j=1 AjiBij .
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Inserting these into (3.52), the second and third terms are moved to O(ε3Ω0F0), and so〈
dF̃1

dt

〉
R

= v‖b̂ · ∇F̃1 +O(ε3Ω0F0). (3.58)

The gyroaveraged derivative of the Boltzmann term is〈
d

dt

(
−Zeδφ
T0

F0

)〉
R

= −
〈
Zeδφ

T0

dF0

dt
+ ZeF0

T0

dδφ

dt
− ZeδφF0

T 2
0

dT0

dt

〉
R
. (3.59)

Using (3.41) to substitute for dF0/dt and ordering terms, we see that the first term is

−
〈
Zeδφ

T0

dF0

dt

〉
R

= −
(
Ze

T0

)2

F0

〈
1
2v⊥ · ∇(δφ)2

〉
R

+O(ε3Ω0F0) = O(ε3Ω0F0),

(3.60)

where we have used that 〈δφv⊥ · ∇δφ〉R = 〈(1/2)v⊥ · ∇(δφ)2〉R, which we may then

eliminate using (3.9) as usual. Therefore, we may neglect this term. Moving to the sec-

ond term in (3.59), d/dt becomes the Vlasov operator (2.21) since δφ = δφ(r, t), and so

−
〈
ZeF0

T0

dδφ

dt

〉
R

= −ZeF0

T0

〈
∂δφ

∂t
+ v‖b̂ · ∇δφ

〉
R

+O(ε3Ω0F0), (3.61)

again using (3.9) to eliminate 〈v⊥ · ∇δφ〉R. For the third and final term in (3.59),

we can replace R → r in T0
8 and again use the Vlasov operator to find〈

ZeδφF0

T 2
0

dT0

dt

〉
R

= ZeF0

T 2
0

〈(
v⊥ · ∇(δφT0)− T0v⊥ · ∇δφ

)〉
R

+O(ε3Ω0F0)

= O(ε3Ω0F0),
(3.62)

where we have written 〈δφv⊥ ·∇T0〉R = 〈v⊥ ·∇(δφT0)−T0v⊥ ·∇δφ〉R and again used

(3.9) to eliminate each term separately to leading order. We have also used that T0

varies on the equilibrium timescale to say that ∂T0/∂t ∼ ε3ΩT0, and that T0 is a flux

function to cancel the v‖b̂ · ∇T0 term. Therefore, we may also neglect this term in

(3.59) to O(ε2Ω0F0). Consequently, the total Boltzmann term becomes〈
d

dt

(
−Zeδφ
T0

F0

)〉
R

= −ZeF0

T0

〈
∂δφ

∂t
+ v‖b̂ · ∇δφ

〉
R

+O(ε3Ω0F0). (3.63)

For dh/dt, we can use (3.56) and (3.57) to readily find that〈
dh

dt

〉
R

= ∂h

∂t
+
(
v‖b̂ + v∇B + vκ + vχ

)
· ∇h+O(ε3Ω0F0), (3.64)

8Since T0 is an equilibrium quantity, the correction term in the Taylor expansion is higher-order.
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where we have dropped the parallel Baños drift vBa since b̂ · ∇h ∼ εF0/L, making

this term O(ε3Ω0F0).

Finally, we turn to δf2 and F2. Since these terms are already O(ε2F0), we need

only the O(Ω0) part of the Vlasov operator to O(ε2Ω0F0), namely −Ω0∂/∂ϕ. Hence,〈
d(F2 + δf2)

dt

〉
R

=
〈
− Ω0

∂(F2 + δf2)
∂ϕ

∣∣∣∣∣
R

+O(ε3Ω0F0)
〉

R
= O(ε3Ω0F0), (3.65)

since δf2 and F2 are both single-valued in ϕ at fixed R. Consequently, under the

gyrokinetic approximation, we do not need to know anything about the second-order

parts of the distribution function in order to see how the first-order parts evolve.

We are now in a position to bring together all of the terms in the O(ε2Ω0F0)

Fokker-Planck equation. Using (3.50), (3.58), (3.64), (3.63) and (3.65), we find that〈
df

dt

〉
R

= ∂h

∂t
+ (v‖b̂ + v∇B + vκ + vχ) · ∇h− ZeF0

T0

∂〈χ〉R
∂t

+ (v∇B + vκ + vχ) · ∇F0 + v‖b̂ · ∇F̃1 +O(ε3Ω0F0),
(3.66)

noting that the two (ZeF0/T )〈v‖b̂ · ∇δφ〉R terms have exactly cancelled. We have

also substituted in the gyrokinetic potential χ ≡ δφ − v · δA/c.

We now consider the collision terms. Recalling that δφ and T0 are independent of

velocity and so can be brought outside of the collision operator, and that a Maxwellian

F0 enforces ∑s′ C[F0, F0′
s
] = 0, we see that the only the h and F̃1 terms survive inside

the O(ε2Ω0F0) collision operator. Hence, we are finally left with an equation for the

gyroaveraged O(ε2Ω0F0) part of the Fokker-Planck equation:

∂h

∂t
+ (v‖b̂ + v∇B + vκ + vχ) · ∇h− ZeF0

T0

∂〈χ〉R
∂t

+ (v∇B + vκ + vχ) · ∇F0

+ v‖b̂ · ∇F̃1 =
〈∑

s′

(
C[F0, (h+ F̃1)s′ ] + C[(h+ F̃1), F0s′ ]

)〉
R
. (3.67)

We proceed to average this equation over intermediate spatial scales (cf. Section

2.5), under which all the terms linear in fluctuations vanish. The quadratic term

vχ · ∇h also vanishes:

〈vχ · ∇h〉λ = 〈∇ · (vχh)〉λ = 1
∆V

∫
∂∆V

dS · vχh = 0, (3.68)
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where we have used that (∇ · vχ)h = O(ε3Ω0F0) for the first equality, and statistical

periodicity of the turbulence in the final equality.9 The terms which survive the ISA

determine the neoclassical part of the first-order distribution function, F̃1:

(v∇B + vκ) · ∇F0 + v‖b̂ · ∇F̃1 = C(l)
nc [F̃1], (3.69)

where C(l)
nc [F̃1] ≡ ∑s′(C[F0, F̃1s′ ] + C[(F̃1, F0s′ ]) is the gyrotropic part of the linearised

neoclassical collision operator. This equation determines how the distribution function

is affected by the magnetic geometry, and would be the only correction to the classical

Maxwellian distribution function if we did not consider turbulent fluctuations.

Subtracting the neoclassical equation from (3.67), we are left with an equation

featuring only fluctuating terms, known as the gyrokinetic equation:

∂h

∂t
+ (v‖b̂ + v∇B + vκ + vχ) · ∇h− ZeF0

T0

∂〈χ〉R
∂t

+ vχ · ∇F0 =
〈
C

(l)
t [h]

〉
R
, (3.70)

where C(l)
t [h] ≡ ∑

s′(C[F0, hs′ ] + C[h, F0s′ ]) is the linearised turbulent collision op-

erator. This is an evolution equation for h, the turbulent distribution function.

We reiterate that this equation is in terms of gyrokinetic variables (R, ε, µ, ϕ, σ),

with v‖ = σ|v‖|, and

|v‖| =
√

2(ε− µB)
m

, σ = v‖
|v‖|

= ±1. (3.71)

Following [2], the evolution of the turbulent distribution function h chacterised

by (3.70) can be split into three distinct categories. First, we have the source

terms10 ∂〈χ〉R/∂t and vχ · ∇F0, which tell us that turbulence is driven by both

fluctuations in the potentials, and macroscopic gradients. These terms typically

drive large-scale structure in velocity space. There are also the advection terms,

(v‖b̂ + v∇B + vκ + vχ) · ∇h, which lead to phase-mixing and the development of

small-scale structure in velocity space. The nonlinearity in the final term is responsible

for the coupling of different modes, leading to chaotic behaviour within the turbulence.

Finally, we have the collision terms 〈∑s′(C[F0, hs′ ] + C[h, F0s′ ])〉R, which lead to

dissipation and drive the system towards a Maxwellian velocity distribution.
9This says that because the turbulent correlation length is much smaller than λ, the two boundaries

are decorrelated and hence the fluctuating quantities are statistically the same on each boundary.
10These are not source terms in the ‘external’ sense, since the potentials are themselves dependent

on h.



The proportion of ingredients is important, but the
final result is also a matter of how you put them
together. Equilibrium is key.

— Alain Ducasse, Michelin-star chef

4
Transport Equations

4.1 Introduction

In this Chapter, we present the evolution equations for the macroscopic quantities

within a plasma, namely the equilibrium density n0, and pressure p0. These equations

dictate how particles and kinetic energy are distributed throughout the plasma, and

how they evolve on macroscopic timescales. In terrestrial fusion experiments, a high

pressure and particle number must be maintained over the confinement time at the

centre of the device to achieve a high fusion rate. The equations we develop here

will describe the transport of these quantities away from the magnetic axis, and

are consequently a vital tool for informing the design of present and future fusion

devices. The transport equations naturally require taking moments of the Fokker-

Planck equation correct to O(ε3Ω0F0), since n0 and p0 are defined as moments of the

equilibrium distribution function F0, which evolves on the timescale t−1
eq ∼ ε3Ω0.

The rest of this Chapter is organised as follows. First, we will start again with the

Fokker-Planck equation in (r,v) coordinates. To derive the evolution equation for n0,

we proceed to take the density moment. We will then average the resulting equation

over intermediate scales and over a flux surface, in order to obtain the density transport

equation. The p0 derivation is omitted for lack of space, and is instead quoted from [3].

30
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4.2 Evolution of the Density Profile

To begin our calculation of the density profile evolution, we return to (3.1), the exact

Fokker-Planck equation in (r,v) variables. Since r and v are independent variables,

we can write the acceleration term as an exact divergence in velocity space, and the

velocity term as a divergence in position space,

∂f

∂t
+∇ · (vf) + Ze

m

∂

∂v
·
[(

E + v×B
c

)
f

]
=
∑
s′
C[f, fs′ ]. (4.1)

Taking the density moment by integrating over all velocities, and using that the

terms under the exact divergence vanish at infinity and collisions conserve particle

number (cf. (3.13)), we arrive at
∫
d3v

(
∂f

∂t
+∇ · (vf)

)
= 0 (4.2)

which is the usual continuity equation for particle number.

We first want to average (4.2) over a flux surface, so that we are left with only

the cross-flux-surface flux, since this is the relevant flux for fusion experiments.

Performing the FSA (cf. Section 2.46) on (4.2) and using (2.51), we see that the

second term becomes〈∫
d3v∇ · (vf)

〉
ψ

= 1
V ′

∂

∂ψ

(
V ′
〈∫

d3vfv · ∇ψ
〉
ψ

)
. (4.3)

We now take advantage of the axisymmetry of the magnetic field configuration

within a tokamak, and proceed by using the results of Section 2.4. Taking the cross

product of (2.38) with ∇ζ and using simple vector identities, and that ∇φ · ∇ψ = 0

in an axisymmetric configuration, we see that we can write ∇ψ = −R2B0 × ∇ζ.

Inserting this into (4.3), we find

1
V ′

∂

∂ψ

(
V ′
〈∫

d3vfv · ∇ψ
〉
ψ

)
= 1
V ′

∂

∂ψ

(
V ′
〈∫

d3v (−R2f)∇ζ · (v×B0)
〉
ψ

)

= − 1
V ′

∂

∂ψ

(
V ′
〈∫

d3v (R2∇ζ · v) B0
∂f

∂ϕ

〉
ψ

)

= 1
V ′

∂

∂ψ

(
V ′
〈∫

d3v (R2∇ζ · v)
(

(v×B0) · ∂f
∂v

)〉
ψ

)
,

(4.4)
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where we have used that v×B0 = −B0∂v/∂ϕ and integrated by parts in ϕ, using that

f is single-valued in ϕ and so the boundary term vanishes. Using the Fokker-Planck

equation again, we can substitute for (v × B0) · ∂f/∂v in the expression above to

find that our flux-surface-averaged (4.2) becomes〈∫
d3v

(
∂f

∂t

)〉
ψ

= 1
V ′

∂

∂ψ

(
V ′
〈
R2∇ζ ·

∫
d3v v

[
B0

Ω0

(
∂f

∂t
+ v · ∇f −

∑
s′
C[f, fs′ ]

)

+
(
− c∇δφ− ∂δA

∂t
+ v× δB

)
· ∂f
∂v

]〉
ψ

)
. (4.5)

Now, we wish to average this equation over intermediate temporal and spatial1

scales, such that only the statistical average of the turbulence will contribute to the

macroscopic flux2. Since B0, and therefore ψ, is time-independent, the ITA and the

FSA clearly commute. A spatial average of (4.5) becomes purely an average over ψ,

since all dependence on θ and ζ has vanished due to the FSA. We then take advantage

of the separation of scales in ψ to say that the ∂/∂ψ acting in (4.5) is over scales ψ0

much larger than ∆ψ, and hence our average over ∆ψ may be brought inside ∂/∂ψ.

By doing so, we see that the FSA in (4.5) becomes an ISA, by using the relation

1
∆ψ

∫ ψ0+∆ψ

ψ0
dψ〈X〉ψ = 1

V ′∆ψ

∫ ψ0+∆ψ

ψ0
dψ

∫ π

−π
dθ
∫ 2π

0
dζJX ≈ 〈X〉λ, (4.6)

using (2.47) and (2.5) and approximating V ′∆ψ ≈ V , since V varies on the large-

scale ψ0. We will hereafter rename ∂/∂ψ → ∂/∂ψ0 to signify that this derivative

is taken over large scales in ψ.

All that remains is to insert (3.34) for the decomposition of f ,3

f = F0 + F1 −
Zeδφ

T
F0 + h+ F2 + δf2 +O(ε3F0), (4.7)

into this equation, average the result over intermediate timescales using the ITA,

and examine the remaining terms up to O(ε3Ω0F0) under the velocity integral. An

important result to remember is that the ITA drops the order of each fluctuating
1The average over intermediate spatial scales is required because there may be persistent structures

in the turbulence constant on flux surfaces, known as zonal flows, which vary over small ψ.
2This can be thought of as an ensemble average over perturbations, via the ergodic principle.
3For now, we keep F0 = F0(r) and F1 = F̃1 − ρ · ∇F0.
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term by ε, so if we can show that a term linear in fluctuations is O(ε3Ω0F0) before

the ITA, it will not contribute at this order.

Carrying out this procedure, we see that the left-hand side just becomes〈∫
d3v

(
∂F0

∂t
− ∂

∂t

(
Zeδφ

T
F0

)
+ ∂h

∂t
+ ∂F1

∂t
+ ∂δf2

∂t
+ ∂F2

∂t

)〉
λ

= ∂n0

∂t
, (4.8)

where we have defined the equilibrium number density n0 ≡ 〈
∫
d3vF0〉λ. Here, we

have used that the partial time derivatives of F1 and F2 are higher order, that the

ITA drops the order of the time derivative of δf2, and the combination of the ITA

and ISA drops the order of h and δφ.4

Before treating the right-hand side of (4.5), it is useful to first calculate the order

of the prefactor of the square bracket. From the definition of ψ0 as the poloidal ribbon

flux, we can see that ψ0 ∼ B0L
2. Using this, along with maximally ordering R ∼ L

and using vT/L ∼ εΩ0, we see that (1/V ′)∂/∂ψ0(V ′(R2∇ζ · v)) ∼ εΩ0/B0.

Immediately, we see that the first terms in the square bracket are multiplied by

an overall factor of ε, meaning that we only need to keep them up to O(ε2Ω0F0).

Performing the same treatment as before on ∂f/∂t, we see again that only the F0

contribution survives, but may now be neglected since it is an order higher in ε.

Turning our attention to the v · ∇f term in (4.5), we insert the full expansion

of f and perform the ITA to find5

1
V ′

∂

∂ψ0

(
V ′
〈
R2B0

Ω0
∇ζ ·

∫
d3v vv · ∇

(
F0(R) + F̃1 −

Zeδφ

T
F0 + h+ F2 + δf2

)〉
λ

)

= B0

Ω0

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v vv · ∇F̃1

〉
λ

)
, (4.9)

where the F2 term is higher order, and the δf2 term has been eliminated by the

ITA. The h and δφ terms can be integrated by parts in space, using the divergence

theorem to eliminate the boundary term, since contributions from the ψ and ψ + ∆ψ

flux surfaces are statistically equal and opposite: the surface normals are antiparallel

to leading order, and statistical periodicity enforces that fluctuating quantities are
4The two averages combine to form the turbulence average used in [4] to eliminate these terms.

One could also substitute for these terms using the gyrokinetic equation, and show that each term
vanishes separately.

5Remember that B0/Ω0 is just mc/Ze, a constant.
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statistically the same on both surfaces. The remaining term is higher order, since the

gradient is now applied to equilibrium quantities. The F0 term vanishes by employing6

∫
d3r

∫
r
d3v =

∫
d3R

∫
R
d3v (4.10)

(where the subscript denotes the variable to be held fixed during integration), and

using that F0 is a function of v only in velocity space, meaning the angle integrals

can be performed first to leave
∫
d3vF0vv ∝ I. We then use ∇F0 = F ′0(ψ)∇ψ and

∇ψ · ∇ζ = 0 to eliminate the term. Consequently, we are left with just the F̃1 term,

as shown. Following [2], we define the neoclassical pressure tensor as

P ≡
∫
d3v vvF̃1 =

∫
d3v

(
v2
‖b̂b̂ + v2

⊥
2 (I− b̂b̂)

)
F̃1 + P̃, (4.11)

where P̃ ≡
∫
d3v(b̂v⊥+ v⊥b̂)v‖F̃1 is antisymmetric.7 Using this tensor, (4.9) becomes

B0

Ω0

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ·

(
∇·P

)〉
λ

)
= B0

Ω0

1
V ′

∂

∂ψ0

(
V ′
〈
∇·
(
R2∇ζ·P

)
−P : ∇

(
R2∇ζ

)〉
λ

)
.

(4.12)

The first term vanishes using the divergence theorem, and employing periodicity in

the toroidal and poloidal angles. The part of the second term involving the symmetric

part of P disappears because ∇(R2∇ζ) = êRêζ − êζ êR is an antisymmetric tensor,

which when double-contracted with the symmetric part of P goes to zero. The P̃

part of the second term also vanishes: using (4.10) and that F̃1 is gyrotropic, we

are left with a term inside the brackets proportional to
∫

R dϕ P̃ = 0. Hence, we

conclude that the entire v · ∇f term vanishes at this order.

We now consider the electromagnetic terms in (4.5). Inserting (4.7) and performing

the ITA, we find for the F0 term

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
− c∇δφ− ∂δA

∂t
+ v× δB

)
·
(
− mv

T0

)
F0

〉
λ

)

= 1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
v⊥ · ∇δφ

)mc
T0
F0

〉
λ

)

= − 1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
∂δφ

∂ϕ

∣∣∣∣∣
R

)
mc

T0
F0

〉
λ

)
= 0,

(4.13)

6This relation, featured in [2], can be understood by considering that each particle has a unique
guiding centre, and so when integrating over the whole phase space, we can choose to count particle
positions or gyrocentre positions.

7This can be seen by performing the ϕ integration, recalling F̃1 is gyrotropic.



4. Transport Equations 35

where for the first equality we use that the ITA moves all O(ε3Ω0F0) terms which are

linear in fluctuations to higher order, and for the second equality we have used (3.9)

and (4.10), and the fact that δφ is independent of ϕ at fixed r and single-valued in ϕ

at fixed R, to eliminate the remaining term – hence, the entire F0 term vanishes.

The Boltzmann term can be treated in an exactly analogous manner: since δφ

and T0 are independent of v, the velocity derivative becomes

∂

∂v

(
− Zeδφ

T0
F0

)
= Zeδφ

T0

mv
T0

F0. (4.14)

We can therefore see that we have the same form as in (4.13), except all terms have been

shifted up one order in ε. AtO(ε3Ω0F0), and we are instead left with the quadratic term

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
v⊥ · ∇δφ

)
δφ
Zemc

T 2
0

F0

〉
λ

)
. (4.15)

Rewriting δφv⊥ · ∇δφ = (1/2)v⊥ · ∇(δφ)2, we can perform the same treatment using

(3.9) and (4.10) to see that the entire Boltzmann term also goes to zero.

To deal with the term involving h, we first integrate by parts in velocity space to find

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
− c∇δφ− ∂δA

∂t
+ v× δB

)
·
(
∂h

∂v

)〉
λ

)

= − 1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v

(
− c∇δφ− ∂δA

∂t
+ v× δB

)
h

〉
λ

)
.

(4.16)

Expanding v × δB = ∇(v · δA) − v · ∇δA and eliminating terms of higher order

than O(ε3Ω0F0), we find that this can be written

− 1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v

(
− c∇δφ+∇(v · δA)− v⊥ · ∇δA

)
h

〉
λ

)

= 1
V ′

∂

∂ψ0

(
V ′
〈∫

d3v
(
cR2∇ζ · ∇χ

)
h

〉
λ

)
,

(4.17)

where we have used (3.9), (4.10) and the fact that h is gyrotropic to eliminate the

v⊥ · ∇δA term with the ϕ integration, and substituted for the gyrokinetic potential χ.

We can write this in a more physically illuminating form, following [2]. Recalling the

definition of the generalised E ×B velocity vχ from (3.44), we see that we can write

vχ×B0 = c(〈∇χ〉R−b̂
(
b̂·〈∇χ〉R

)
⇒ R2∇ζ ·

(
vχ×B0

)
= cR2∇ζ ·〈∇χ〉R+O(cχ),

(4.18)



4. Transport Equations 36

where we have used that the second term is an order higher in ε. Using the relation

∇ψ = −R2B0 ×∇ζ to find that cR2∇ζ · 〈∇χ〉R = −∇ψ · vχ to leading order, and

noticing that the velocity integral already includes an integral over ϕ at constant

R (using (4.10)) so we are free to replace ∇χ with 〈∇χ〉R, we finally see that the

only contribution to the right-hand side of (4.5) from the turbulent fluctuations is

the radial component of the generalised E × B drift:

− 1
V ′

∂

∂ψ0

(
V ′
〈
∇ψ ·

∫
d3v vχh

〉
λ

)
. (4.19)

On to the F1 term,8 and we can again integrate by parts in velocity space and

eliminate higher-order terms to obtain

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
− c∇δφ− ∂δA

∂t
+ v× δB

)
·
(
∂F1

∂v

)〉
λ

)

= − 1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v

(
− c∇χ− v⊥ · ∇δA

)
F1

〉
λ

)
.

(4.20)

Again, (3.9) and (4.10) can be used to eliminate the v⊥ · ∇δA term, and we can

use the trick of integration by parts and employing statistical periodicity to transfer

the gradient operators to equilibrium quantities as follows:

− 1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v

(
− c∇χ

)
F1

〉
λ

)

= 1
V ′

∂

∂ψ0

(
V ′
〈∫

d3v
(
− cχ

)
∇ ·

(
F1R2∇ζ

)〉
λ

)
,

(4.21)

where the boundary term vanishes as before. This term is O(ε4Ω0F0), and hence

the entire F1 term also does not contribute at this order.

Turning our attention to the collision terms, we see they contribute at O(ε3Ω0F0)

as follows. Recalling the separation of F1 into a gyrotropic part F̃1 and the gyroradius

correction ρ · ∇F0 in (3.30), the total collision term is∑
s′

(
C[F0, (h+ F̃1 − ρ · ∇F0)s′ ] + C[(h+ F̃1 − ρ · ∇F0), F0s′ ]

)
= C

(l)
t [h] + C(l)

nc [F̃1]− C(l)
ρ [ρ · ∇F0],

(4.22)

8We can treat this all together as one term, since the only property we need is that F̃1 and ρ ·∇F0
are first-order terms which vary on the length scale L.
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defining C(l)
ρ [ρ · ∇F0] ≡

∑
s′(C[F0, (ρ · ∇F0)s′ ] + C[ρ · ∇F0, F0s′ ]). The C(l)

t [h] term

is O(ε3Ω0F0) and therefore vanishes under the ITA, so the total contribution to

the right-hand side of (4.5) is

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
− B0

Ω0

(
C

(l)
nc [F̃1]− C(l)

ρ [ρ · ∇F0]
))〉

λ

)
. (4.23)

Dealing with the second term first, we can use ∇ψ = −R2B0 ×∇ζ and (2.29) to find

R2B0

Ω0
v · ∇ζ = R2B0

Ω0
v‖b̂ · ∇ζ − ρ · ∇ψ, (4.24)

and hence the second term can be written

− 1
V ′

∂

∂ψ0

(
V ′
〈
∇ψ ·

∫
d3v

(
ρC

(l)
ρ [ρ · ∇F0]

)〉
λ

)
, (4.25)

where the first term in (4.24) vanishes since it is odd in velocity space. Substituting in

the neoclassical equation (3.69) to simplify the first term in (4.23), we find it becomes

1
V ′

∂

∂ψ0

(
V ′
〈
R2∇ζ ·

∫
d3v v

(
− B0

Ω0

(
���

���
���

�:0
(v∇B + vκ) · ∇F0 + v‖b̂ · ∇F̃1

))〉
λ

)

= − 1
V ′

∂

∂ψ0

(
V ′
〈∫

d3v
Iv‖
Ω0

(
v‖b̂ · ∇F̃1

)〉
λ

)

= 1
V ′

∂

∂ψ0

(
V ′
〈∫

d3v F̃1v‖b̂ · ∇
(
Iv‖
Ω0

)〉
λ

)
,

(4.26)

where the first term in the first line is odd in velocity, and we have integrated by

parts in velocity space in the same way we did in (3.19) to obtain the result. We

now employ a relation, proven in [4], which states that

v‖b̂ · ∇
(
Iv‖
Ω0

)
= −(v∇B + vκ) · ∇ψ (4.27)

in order to find that the final contribution from the second term of (4.23) to the

right-hand side of (4.5) is

− 1
V ′

∂

∂ψ0

(
V ′
〈
∇ψ ·

∫
d3v (v∇B + vκ)F̃1

〉
λ

)
(4.28)

Lastly, we can clearly see that the f2 terms will both be O(ε4ΩF0), and so they

can both be neglected to leading order. An external particle source term Sn may also
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be included ad hoc at this order, to account for equilibrium-scale input of particles

into the system, such as via neutral beam injection.

Bringing together all of the terms which contribute to the right-hand side of (4.5),

and moving them to the left-hand side, we realise we have arrived at an equation for

the equilibrium-scale cross-flux-surface particle transport which is correct to O(ε3ΩF0):

∂n0

∂t
+ 1
V ′

∂

∂ψ0

(
V ′〈Γ〉λ

)
= Sn

Γ ≡ ∇ψ ·
∫
d3v

(
vχh+ (v∇B + vκ)F̃1 + ρC(l)

ρ [ρ · ∇F0]
)
.

(4.29)

(4.30)

This equation manifestly features only the cross-flux-surface flux, and describes the

net flux due to the combined effect of turbulent, neoclassical and collisional transport.

4.3 Evolution of the Pressure Profile

A similar derivation (which we omit for lack of space) shows that the pressure

evolves according to (cf. [3])

3
2
∂p0

∂t
+ 1
V ′

∂

∂ψ0

(
V ′〈Q〉λ

)
= −〈H〉λ + 3

2n0
∑
s′
νεss′(Ts′ − Ts) + Sp

Q ≡ ∇ψ ·
∫
d3v

mv2

2
(
vχh+ (v∇B + vκ)F̃1 + ρC(l)

ρ [ρ · ∇F0]
)

H ≡
∫
d3v e

(
∂χ

∂t

)
.

(4.31)

(4.32)

(4.33)

Here, Q is the cross-flux-surface heat flux, H is the rate of heating by the fluctuating

fields, Sp is the external heat source, and νεss′ is the collisional energy exchange

frequency given by

νεss′ ≡
6.88(msms′)1/2Z2

sZ
2
s′e4n0s′ log Λss′

(msTs′ +ms′Ts)3/2 , (4.34)

where log Λss′ is the Coulomb logarithm. It can be seen, rather intuitively, that the

mechanisms responsible for particle transport also allow kinetic energy to be trans-

ported, by comparing Q and Γ. Notable additions in the equation for heat transport

are H, accounting for the work done on the particles by the fluctuating potentials,

and (3/2)n0
∑
s′ νεss′(Ts′ − Ts), accounting for collisional heating by other species.9

9This is the ad hoc collisional energy exchange mentioned previously.



A conclusion is the place where you got tired thinking.

— Martin H. Fischer

5
Conclusions

In this work, we have taken advantage of the large separation of scales to systematically

expand the Fokker-Planck equation in a small parameter ε, and therefore derive

equations for the turbulent (h) and neoclassical (F̃1) first-order corrections to the

Maxwell-Boltzmann equilibrium distribution function for a tokamak plasma in a

steady equilibrium magnetic field. Assuming that all relevant dynamics occured on

a timescale much larger than that of a gyroperiod, we averaged our equations over

gyroangle at each order, meaning that the second-order correction to the distribution

function was not required in our equations for the first-order pieces. We also found

that the turbulent distribution function physically describes a distribution of charged

rings in gyrokinetic coordinates over a 5D phase space. In order to simplify our

treatment of the magnetic geometry of the system, we developed the flux-coordinate

formalism and employed axisymmetry, which we utilised to define averages both

over intermediate spatial scales, and over a flux surface. We also defined an average

over timescales well-separated from both the turbulent and equilibrium scales, and

used this, along with the spatial equivalent, to average moments of the distribution

function over intermediate scales. In so doing, we kept only the statistical average

of the turbulent contributions, and by averaging these equations over a flux surface

we ensured that we kept only terms which contributed to the cross-flux-surface flux.

The end result is a set of equations which describe the mean density and temperature

evolution inside a tokamak. Manifest in these equations are the contributions to the

39
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fluxes from collisions and neoclassical transport, as well as from turbulent fluctuations

of the electromagnetic potentials; the latter is responsible for both transporting

particles and kinetic energy outwards via the generalised E × B velocity, and for

doing work on the particles via the time derivative of the gyrokinetic potential in

the heating term of the energy transport equation. We have therefore shown that

micro- and macro-scale phenomena in a tokamak are intrinsically coupled – the

gyrokinetic equation demonstrates that the turbulent distribution function evolves

in a way which depends on macroscopic gradients, which are themselves influenced

by the turbulence as shown by the transport equations.

In addition to elucidating the physics of coupling across scales in a tokamak, the

approach developed in this dissertation is used numerically in Trinity [2, 3], a code

developed to simulate the effect of turbulence on the radial profiles of equilibrium

quantities by coupling a transport solver to continuum gyrokinetic codes, such as

GS2 [12]. This is much more computationally efficient than full-f 6D simulations;

in addition, the latter encounters difficulties due to the large separation of scales

demanding that the distribution function and fields must be calculated to very high

order. Gyrokinetic theory and simulations therefore provide a way of routinely

studying cross-flux-surface tokamak transport, an understanding of which is key to

designing future fusion experiments.
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